## DIFFERENTIAL GEOMETRY FINAL EXAM

This exam is of $\mathbf{5 0}$ marks and is $\mathbf{3}$ hours long - from 10 am to 1 pm . Please read all the questions carefully. Please feel free to use whatever theorems you have learned in class after stating them clearly.

## I have not used any unfair or illegal means to answer any of the questions in this exam.

Name:
Signature:

1. Recall that a generalised helix is a space curve such that the curvature $\kappa \neq 0$ and all of its tangent vectors make a constant angle with a fixed direction $\mathbf{A}$. Let $\alpha$ be a generalised helix and $\beta$ the curve optained by projecting $\alpha$ on to a plane orthogonal to $\mathbf{A}$. Let $\kappa_{*}, \tau_{*}$ be the curvature and torsion of the curves $*$.

- Prove that $\tau_{\alpha} / \kappa_{\alpha}$ is constant.
- Prove that the principle normals to $\alpha$ and $\beta$ are parallel.
- Calculate $\kappa_{\beta}$ in terms of $\kappa_{\alpha}$.

2. Recall that a curve $\alpha$ is an asymptotic curve if $I I_{P}((T(P), T(P))=0$ where $T(P)$ is the tangent direction at $P$. Prove or give a counterexample to the following statements:

- A curve is both planar and an asymptotic curve if and only if it is a line.
- A curve which is both an asymptotic curve and a line of curvature must be planar. (3)
- A curve is both a geodesic and an asymptotic curve if and only if it is a line.
- If a curve is both a geodesic and a line of curvature then it must be planar.

3. Let $\mathbf{M}$ be the surface given by the parametrization

$$
x(u, v)=a(\cosh (u) \cos (v), \cosh (u) \sin (v), u)
$$

, $-1 \leq u \leq 1,0 \leq v \leq 2 \pi$. Let $\partial(\mathbf{M})$ denote the boundary circles $u= \pm 1$.
Compute:

- The First Fundamental form $I_{P}$.
- The Second Fundamental form $I I_{P}$.
- The matrix of the shape operator $S_{P}$.
- The Christoffel symbols $\Gamma_{* *}^{*}$.
- The Mean curvature $H$.
- The Gaussian curvature $K$.
- The surface area of M.
- The integral $\int_{\partial(\mathbf{M})} \kappa_{g} d s$ where $\kappa_{g}$ is the geodesic curvature of the boundary circles. (4)
- The Total curvature $\iint_{\mathbf{M}} K d A$
- The Euler characteristic $\chi(\mathbf{M})$.


## Some useful formulae

$$
\begin{gathered}
I=\left(\begin{array}{cc}
E & F \\
F & G
\end{array}\right) \text { and } I I=\left(\begin{array}{cc}
\ell & m \\
m & n
\end{array}\right) \\
\binom{\Gamma_{u u}^{u}}{\Gamma_{u u}^{v}}=I^{-1}\binom{\frac{1}{2} E_{u}}{F_{u}-\frac{1}{2} E_{v}}, \quad\binom{\Gamma_{u v}^{u}}{\Gamma_{u v}^{v}}=I^{-1}\binom{\frac{1}{2} E_{v}}{\frac{1}{2} G_{u}}, \quad\binom{\Gamma_{v v}^{u}}{\Gamma_{v v}^{v}}=I^{-1}\binom{F_{v}-\frac{1}{2} G_{u}}{\frac{1}{2} G_{v}} \\
\ell_{v}-m_{u}=\ell \Gamma u v^{u}+m\left(\Gamma_{u v}^{v}-\Gamma_{u u}^{u}\right)-n \Gamma_{u u}^{v} \\
m_{v}-n_{u}=\ell \Gamma v v^{u}+m\left(\Gamma_{v v}^{v}-\Gamma_{u v}^{u}\right)-n \Gamma_{u v}^{v}
\end{gathered}
$$

